TECHNICAL REPORT 2

Water Bottling Facility

Mid-Atlantic, US

Building and Plant Energy Analysis Report

The Pennsylvania State University Architectural Engineering Mechanical Option Author: Justyne Neborak Advisor: Dr. William Bahnfleth October 12, 2012

TABLE OF CONTENTS

Executive Summary 2	
Mechanical System Summary 2	
System Design Load Estimation	
Block Load Elements	
Load Sources and Modeling Information 4	Ļ
Outdoor Air Ventilation	Ļ
Design Occupancy 4	-
Electrical Loads 4	Ļ
Weather Information	ļ
Space Requirements	ŀ
System Load Analysis Results	,
System Energy Consumption & Operating Cost7	,
System Energy Classification	,
Building Energy Cost Analysis	,
Environmental Impact Analysis)
Building Energy and Cost Analysis Results9)
References 10)
Appendix A – HAP Data Templates11	
Areas of Exterior Walls, Windows & Doors11	•
Blocks11	•
Wall & Roof Assembly 13	
Appendix B – Weather Information	ŀ

Executive Summary

In Technical Report 2 analyses of the design load, energy consumption, and cost of operation for the Water Bottling Facility were run. All of these calculations were found using the Carrier program HAP. Information to perform these calculations was gathered form drawings and specifications provided by the Water Bottling Facility's engineer.

The first calculation of loads used a combination of building materials, area, solar loads, and interior loads. With all of this information it was found that the building uses 21,745,119 kBTU annually.

The energy consumption analysis used the total building load to find how much energy is used to power the building. After running the numbers through HAP it was found that the building uses 19,103,240 kWh annually. This estimate is low because it does not account for the power drawn for two thirds of the manufacturing equipment.

The cost analysis used the energy consumption to find that the energy bill of the Water Bottling Facility should add up to about \$2.09 million annually. Because the energy consumption was missing the electricity drawn by the manufacturing equipment this number is also low. The actual electricity bill of the Water Bottling Facility comes to about \$3.7 million annually.

Based on the energy consumption the amount of emissions from the fuel burned to generate electricity can be calculated. Since the building sector uses the majority of energy used in the United States it is not surprising that the facility energy use produces 6.9 million pounds per year of gaseous and particulate waste.

Mechanical System Summary

The Water Bottling Facility's mechanical systems are comprised of 6 roof top air handling units, a humidifier, 5 electrical and 4 gas unit heaters, 17 VAV boxes, 35 exhaust fans, 16 supply fans, 8 indirect fired make-up air handling units, and 2 gravity hoods. In the mechanical rooms of the facility there are 3 chillers, 4 heat exchangers, 5 compressors, and 3 boilers. Outside of the mechanical rooms are 3 cooling towers. All of these systems contribute to maintaining an acceptable environment within the spaces. There are 14 spaces with load and equipment specific HVAC requirements.

System Design Load Estimation

To analyze the load on the Water Bottling Facility, Carrier Hourly Analysis Program v4.6 (HAP) was used. This allowed the loads to account for loads based on location, building materials, occupancy, and equipment. HAP was selected over other load calculating programs because of previous experience and availability. The energy analysis accounts for an entire year's worth of data, finding the peak design cooling and heating loads for the system.

Block Load Elements

Block analysis was used to minimize the amount of inputs into the load calculation program. The increased speed for entry, minimization of mis-entry, and smaller file size which block analysis makes it a good choice compared to space by space analysis especially because it provides accurate results. Blocks for this analysis were selected based on location and zone requirements resulting in 10 blocks.

Figure 1: Block Load Calculation Boundaries

The figure above shows the breakdown of blocks. Orange represents the main office, blue the production area, green the warehouse, purple the mechanical rooms, brown the Q.C. lab, and red the H-3 essence room. The pink represents both levels of the shipping office and the yellow both levels of the maintenance area.

Load Sources and Modeling Information

Outdoor Air Ventilation

The outside air ventilation rates fulfill LEED requirements by using a 100% outside air enthalpy economizer cycle. Several of the spaces go so far as to only have supply fans that bring in outside air directly.

Design Occupancy

Design occupancy is relevant in the office spaces but used as a guide for the production and warehouse. The number of occupants is extremely exaggerated based on the large area of those spaces. The total number of people in each space can be found in the emergency egress plan. This plan used such a large number of people based on how many people could potentially be there.

The load was also influenced by this facility running on a 24 hour schedule. Although areas within the Main Office are not occupied for the whole day, they make up a small percentage. All other spaces, including the shipping office, operate on an around the clock basis.

Electrical Loads

Actual loads based on lighting were calculated. Computer loads were estimated in office spaces based on one lap top per person. An estimation of production space load was made based on information given in the specifications. Information for all production equipment was not provided.

Weather Information

Design conditions for the Mid Atlantic town were given in the mechanical drawings and confirmed using ASHRAE Handbook of Fundamentals 2009.

Heating Design	Cooling Desig	n Temperature	No. Hrs.
Temperature	Dry-bulb	Wet Bulb	8 AM – 4PM
99.6%	1.0%	1.0%	55 < Tdb < 69
5°F	88°F	72°F	710

Table 1: Location Design Criteria

Space Requirements

The Water Process Area has design conditions of 80°± 2°F maximum cooling dry bulb with a cooling dew point of 48°F with a maximum of 50°F. For heating conditions, 60°F is the minimum temperature. The space is generally not in need of heat due to the equipment load in the space. The Water Process Area also requires about 0.05 CFM/SF for ventilation based on ASHRAE 62.1, and a positive pressurization of 0.01″ to 0.02″ W.G. to the warehousing and 0.01″ W.G. to the outdoors. The space is designed to use an air enthalpy economizer cycle that utilized 100% outside air

The Injection Mold/Blow Mold/Filler Area has the temperature and humidity requirements as the Water Process Area and also has a 0.01" W.G. positive pressurization relative to the warehousing.

The Packaging Area has a cooling dry bulb design of 104°F or 10°F above ASHRAE's 1% summer design dry bulb. This is determined based on which temperature is closer to 90°F. Heating design requirements has a minimum temperature of 55°F. Ventilation required in 5,000 CFM per forklift, of which there are usually 2. The Packaging Area should have a positive pressurization of 0.01" to 0.02" W.G. to the outside.

The Warehouse has the same cooling and heating design requirements as the Packaging Area. The air changes required per forklift is also the same, but there is typically 1 forklift per 200,000 ft² of warehouse space. Pressurization is also the same.

The Utilities Room has minimum and maximum design temperatures of 50°F and 95°F respectively. It also requires up to 12,000 CFM of outside air make-up for the compressors.

The Chiller Room has the same design temperatures as the Packaging Area for heating and cooling. The chillers in the Chiller Room are connected to pieces of equipment with high heat load to prevent overheating as well as to the roof top units.

The Boiler/Water Treatment Room also follows the specifications of the Packaging Area but is cooled by ventilation only, not cooling or air conditioning. The boilers, like the chillers, are used by specific pieces of equipment, as well as the roof top units.

The Electrical Room follows the same guide lines as the Packaging area with a max temp of 104°F or 10°F above the 1% summer design dry bulb. This space also is only ventilated, not cooled.

The Chemical Storage Room follows the requirements of the Packaging Area for cooling, but has a minimum temperature of 50°F with temperature sensors to prevent extremes of temperature. The room is also negatively pressurized at 0.01" W.G.

The Q.C. Lab has a minimum temperature requirement of 68°F and a maximum of 75°F. The humidity should be in the range of 35% to 45% in winter and 45% to 55% in summer with positive 0.01" W.G. pressurization. All air in this space is make-up and cannot be recirculated. This space has the most critical load of the entire facility.

The Maintenance Shop has a maximum temperature of 104°F or 10°F above outside air dry bulb on the 2.5% design condition, depending on which value is closest to 95°F. The minimum temperature for the space is 60°F.

The Shipping Office is conditioned to have a heating temperature of 68°F and a cooling temperature of 74°F. The ventilation in this office space meets minimums required of local code and LEED.

The Main Office has the same design requirements as the Shipping Office.

Fire Pump Room follows the same requirements for cooling as the Packaging Area. The Minimum temperature for the space is 45°F which is maintained by electric or gas heaters.

System Load Analysis Results

The table below shows the cooling, heating, supply, and ventilation requirements for the Water Bottling Facility. The supply data was gathered from the AHU schedule within the drawings. There were no calculations provided by the engineers.

	Cooling (ft ² /cfm)	Heating (Btu/hr*ft ²)	Supply Air (cfm/ft ²)	Ventilation Air (cfm/ft ²)
Block Calculation	17.99	0.25	0.78	0.04
Data Supplied	3.33	2.80	0.57	0.14

Table 2: Block Load Calculation vs. Actual Rates

The variations seen in this table compared to those found in the mechanical schedule could be a result of missing information and a very low cooling requirement for most spaces.

Monthly Mechanical Load

Figure 2: Monthly Mechanical Load

As seen in the graph above the summer requires a much greater mechanical output while the cooler months do not have any load requirements. This is because the processing produces such a large amount of heat that heating is unnecessary unless that facility is not running in the case of a holiday or other scheduled shutdown. These days were neglected in the load calculation because they only occur about twice a year. This results in a total demand of 21,745,119 kBTU annually.

System Energy Consumption & Operating Cost

Energy cost and consumption were taken into account in the HAP model based on the load calculation. The cooling for the roof top units was provided by chillers which run on electric. The heating via mechanical systems had very little impact on the total energy usage because of the amount of heat generated by the equipment in the production portion of the facility.

System Energy Classification

According to the Annual Energy Consumption estimate produced by HAP, the Water Bottling Facility consumes about 19,103,240 kWh annually. The majority of this energy was used to light the space and run the equipment used for processing. HVAC systems used a mere 6% of the energy consumed by the facility.

Figure 3: Percent Energy Consumption per System

Monthly Energy Consumption

Figure 4: Monthly Electrical Energy Consumption

Although there are 4 gas unit-heaters used in the building, their usage is limited to times of facility shut down in very cold weather.

Building Energy Cost Analysis

Energy cost was found via the electricity provider. The cost per kWh varies based on the type of building it is going to. Since the Water Bottling Facility is industrial it falls in a category of businesses that pay \$0.10346/kWH. While this value may seem to be low, the amount of energy consumed at the Water Bottling Facility causes it to add up quickly.

Based on the HAP calculations the annual energy cost to run the building is about \$2.09 million. The actual energy cost for the Water Bottling Facility in about \$3.7 million annually. This large cost difference is likely attributed to the additional production equipment whose energy information was omitted from the specifications.

Environmental Impact Analysis

The means by which the electricity is produced varies throughout the country based on available resources. The different colors in the figure below represent electrical grid boundaries of electric companies and the dotted lines indicate the area that use different ratios of fuels to produce the electricity. The graph on the right displays the percent of each type of fuel used in the Eastern Interconnection, which is where the Water Bottling Facility is located. The percentage of each contributing fuel influence the emission generated by the facility's energy use.

Figures 5 & 6: Boundaries of Electrical Grid & Percent Fuel Source to Produce Electricity

The table on the following page shows the total weight of particulate matter produced annually by the Water Bottling Facility. This total is a result of the electrical use of the building. The emissions are not necessarily being emitted into the air around the facility but emitted at the power station where the electricity is generated.

Pollutant	Regional Grid Emission Factors 2007 (lb/kWh)	Calculated Emissions (lb/year)
CO2e	1.74E+00	3.32E+06
CO2	1.64E+00	3.13E+06
CH4	3.59E-03	6.86E+03
N2O	3.87E-05	7.39E+01
NOX	3.00E-03	5.73E+03
SOX	8.57E-03	1.64E+04
СО	8.54E-04	1.63E+03
TNMOC	7.26E-05	1.39E+02
Lead	1.39E-07	2.66E-01
Mercury	3.36E-08	6.42E-02
PM10	9.26E-05	1.77E+02
Solid Waste	2.05E-01	3.92E+05

More emissions are generated by the use of the gas unit heaters but because they are used so seldom their contribution to the total emissions is minimal.

Table 3: Emissions Analysis

Building Energy and Cost Analysis Results

The results of the building energy cost analysis indicate that the impact of the equipment used in the building outweighs the mechanical systems. Based on the significant impact seen in this calculation including less than half of these components, the production equipment will trump the energy demand of the lighting. This significant increase in the energy consumption is likely to increase the energy cost by ¼. This also means that the emissions are likely to be increased by ¼. Because the facility functions partly as a factory this large cost of operation and high emissions output is expected.

References

- ANSI/ASHRAE (2007), <u>Standard 62.1-2007</u>, <u>Ventilation for Acceptable Indoor Air Quality</u>. American Society of Heating Refrigeration, and air Conditioning Engineers, Inc., Atlanta, GA, 2007.
- ANSI/ASHRAE (2007), <u>Standard 90.1-2007, Energy Standard for Building Except Low Rise</u> <u>Residential Buildings.</u> American Society of Heating Refrigeration, and air Conditioning Engineers, Inc., Atlanta, GA, 2007.
- Deru, M. and P Torcellini, <u>Source Energy and Emission Factors for Energy Use in Buildings</u>. Technical Report NREL/TP-550-38617

Haskel Architects and Engineers Engineering Reports

Water Bottling Facility Specifications and Images

Acknowledgements

A special thanks to the team at the Water Bottling Facility, who have been a constant source of information.

Jack Neborak, Ron Hendeson, and Chris Hoffner, Thank you for all your help.

Appendix A – HAP Data Templates

Areas of Exterior Walls, Windows & Doors

Plack	Area	# of Doomlo	Coiling Hoight (ft)		Len	gth Fac	ing Com	pass Di	ectior	n (ft ²) / C	Doors (f	t ²) / W	indows (ft ²)	
DIOCK	(ft ²)	# OI People	Centrig Height (It)		NE/W			SE/S			SW/E			NW/N	
H-3 Essence	1650	17	19.5	-	-	-	675	21	16	-	-	-	-	-	-
Main Office	17414	395	8	2176	21	438	-	-	-	2176	0	680	3103	0	939
Maintenance Mezz.	6690	22	16	-	-	-	2893	0	0	-	-	-	-	-	-
Maintenance Shop	5311	53	12	-	-	-	1050	42	0	-	-	-	-	-	-
Mechanical	17385	58	23.5	-	-	-	-	-	-	9600	100	0	-	-	-
Processing	245176	2452	23.5	-	-		1280	221	0	6400	121	0	12240	84	0
Q.C. Lab	1378	14	10	-	-	-	265	21	0	-	-	-	-	-	-
Shipping Mezz.	1906	6	16	1930	0	0	-	-	-	-	-	-	-	-	-
Shipping Office	1906	19	8.5	1158	21	57	-	-	-	-	-	-	-	-	-
Warehouse	285530	571	30	9280	1926	0	16000	1105	0	24800	21	0	16000	105	0

Blocks

Space Properties - [H-3 Essence] General Internals Walls, Windows, Doors Roofs, Skylights Infiltration Floors Partitions	General Internats Walls, Windows, Doors Roofs, Skylights Infiltration Floors Partitions
Name H-3 Essence Eloor Area 1650.0 fê Avg Ceiling Height 19.5 ft Building Weight 70.0 lb/tê Light Med. Heavy OA Ventilation Requirements Space Lisage EDUCATION: Science laboratory ▼ OA Requirement 1 10.0 CFM/person ▼ OA Requirement 2 0.18 CFM/re ▼ OF Requirement 2 Defaults: ASHRAE Std 62.1-2007 Defaults can be changed via View/Preferences.	Name Main Office Floor Area 17414.0 Avg Ceiling Height 8.0 Building Weight 70.0 Ib/R ^a Light Med. Heavy OA Ventilation Requirements OA Requirement 1 Space Lisage OFFICE: Office space OA Requirement 1 5.0 CFM//person V OA Requirement 2 0.06 CFM//R V Dealuis: ashe changed via View/Preferences.
OK Cancel Help Space Properties - [Maintenance Mezz] Space Properties - [Maintenance Mezz] Space Properties - [Maintenance Mezz]	OK Cancel Help Space Properties - [Maintenance Shop]
Mame Maintenance Mezz Eloor Area 6690.0 Avg Ceiling Height 16.0	General Internals Walls, Windows, Doors Roofs, Skylights Infiltration Floors Partitions Name Maintenance Shop Eloor Area 6690.0 ft* Avg Ceiling Height 12.0 ft ft
Building Weight 70.0 lb/t [®] Light Med. Heavy OA Ventilation Requirements Space ∐sage EDUCATION: Wood/metal shop ▼ OA Requirement 1 10.0 CFM/person ▼	Building Weight 70.0 Ib/R [®] Light Med. Heavy OA Ventilation Requirements Space Usage EDUCATION: Wood/metal shop OA Requirement 1 10.0 CFM/person
OA Requirement 2 0.18 CFM/It [®] ▼ Space usage defaults: ASHRAE Std 621-2007 Defaults can be changed via View/Preferences.	OA Requirement 2 0.18 CFM/it [®] ▼ Space usage defaults: ASHRAE Std 62.1-2007 Defaults can be changed via View/Preferences.

WATER BOTTLING FACILITY MID-ATLANTIC, US

OK

Cancel

<u>H</u>elp

Cancel

<u>H</u>elp

OK

TECHNICAL REPORT II | 12

🗊 Space Properties - [Mechanical]	Space Properties - [Processing]
General Internals Walls, Windows, Doors Roofs, Skylights Infiltration Floors Partitions	General Internals Walls, Windows, Doors Roofs, Skylights Infiltration Floors Partitions
Name Mechanical Eloor Area 17385.0 ft² Avg Ceiling Height 23.5 ft Building Weight 70.0 lb/ft² Ught Med. Heavy OA Ventilation Requirements	Name Processing Floor Area 245176.0 Avg Ceiling Height 23.5 Building Weight 70.0 Ib/It ² Image: Comparison of the served se
🗃 Space Properties - [Q.C. Lab]	Space Properties - [Shipping Mezz]
General Internals Walls, Windows, Doors Roofs, Skylights Infiltration Floors Partitions	General Internals Walls, Windows, Doors Roofs, Skylights Infiltration Floors Partitions
Name Q.C. Lab Eloor Area 1378.0 Avg Ceiling Height 10.0 Building Weight 70.0 b/t [®] Light Med. Heavy OA Ventilation Requirements Ught Space Usage EDUCATION: Science laboratory OA Requirement 1 10.0 CFM/re ✓ OA Requirement 2 0.18 CFM/re ✓ Space usage defaults: ASHRAE Std 62.1-2007 Defaults can be changed via View/Preferences.	Name Shipping Mezz Eloor Area 1960.0 Avg Ceiling Height 10.0 Building Weight 70.0 Building Weight 70.0 b/t* Light Med. Heavy OA Ventilation Requirements Space Usage OFFICE: Office space OA Requirement 1 5.0 CFM/person OA OA Requirement 2 0.06 CFM/fe Space usage defaults: ASHRAE Std 521-2007 Defaults can be changed via View/Preferences. OK
Space Properties - [Shipping Office]	Share Dropertier - [Warehoure]
General Internals Walls, Windows, Doors Roofs, Skylights Infiltration Floors Partitions	General Internals Walls, Windows, Doors Roofs, Skylights Infiltration Floors Partitions
Name Shipping Office Eloor Area 1906.0 rê Avg Ceiling Height 8.5 ft Building Weight 70.0 lb/fê Light Med. Heavy OA Ventilation Requirements Space Usage OFFICE: Office space OA Requirement 1 5.0 CFM/person OA Requirement 2 0.06 CFM/re Space usage defaults: ASHRAE Std 62.1-2007 Defaults can be changed vie Verwerences.	Name Warehouse Eloor Area 285530.0 Avg Ceiling Height 30.0 Building Weight 70.0 Ib/ft ^e Light OA Ventilation Requirements Space ∐sage MISCELLANEOUS: Warehouse OA Requirement 1 0.0 CFM/person Image: Space usage defaults: ASHRAE Std 62.1-2007 Defaults can be changed wire Vereinences. Image: Space usage defaults: ASHRAE Std 62.1-2007
0K Cancel Help	OK Cancel Help

Wall & Roof Assembly

	Wall Properties - [Default Wall A	ssembly]				8		Roof Properties - [De	fault Roof A	Assembly]				23
١	Wall Assembly <u>N</u> ame: Default W	all Assemb	ly			-	F	Roof Assembly <u>N</u> ame:	Default R	oof Asseml	oly			•
1	Outside Surface <u>C</u> olor: Light	-			<u>A</u> bsorptivity:	0.450	(Outside Surface <u>C</u> olor:	Light	•			Absorptivity:	0.450
	Layers: Inside to Outside	Thickness	Density Ib/fP	Specific Ht. BTU/Ib/F	R-Value hr-fP-E/BTU	Weight	Γ	Layers: Inside to D)utside	Thickness	Density	Specific Ht. BTU/Ib/F	R-Value br/B-F/BTU	Weight
	Inside surface resistance	0.000	0.0	0.00	0.68500	0.0		Inside surface res	istance	0.000	0.0	0.00	0.68500	0.0
	Gypsum board 👻	0.625	50.0	0.26	0.56000	2.6	Ī	Steel deck	-	2.000	489.0	0.12	0.00011	1.4
	8-in LW concrete 🔹	6.500	40.0	0.20	5.41667	21.7		Board insulation	-	1.000	2.0	0.22	6.94400	0.2
	R-19 batt insulation 👻	1.500	0.5	0.20	4.80769	0.1		Membrane	-	0.250	70.0	0.35	0.22163	1.5
	4-in HW concrete 🔹	2.250	140.0	0.20	0.18750	26.3		Outside surface re	esistance	0.000	0.0	0.00	0.33300	0.0
	Outside surface resistance	0.000	0.0	0.00	0.33300	0.0		Totals		3.250			8.18	3.0
	Totals	10.875			11.99	50.6					0\	erall U-Value:	0.122	BTU/hr/f€/F
			0،	erall U-Value:	0.083	BTU/hr/ft⁰/F								
				DK	Cancel	Help						DK	Cancel	<u>H</u> elp

Elev: Elevation, A Wind speed, mph hase 65°F, °F-day	Heat./Cool.	Degree-Days	83 1418	04 10/8 43 1578	more on CD-ROM	37 1349	6/01 CR	19 1342	72 1175	58 1390 58 1496	84 1457 more on CD POM	05 2412	36 2568	8/ 2521 10 2653	96 2763	69 2770	58 2422	18 2846	10 3213	94 2652 56 2403	DO CD-ROM	72 307	73 359	94 375 265	41 334	more on CD-ROM	21 1241	0/ 1216 03 1216	more on CD-ROM	21 750	56 281	71 428	362 395	37 553	22 574	4/4 6/4	10 010 32 646	07 453	54 898	83 775	080 501 501	87 626	84 861	780 86
WS:			496	7 1	S sites, 5	6 41	4 18 18 18 18 18	14	2 1 5	0 6 4 4	15 37	2 200	200	2 161	146	14	35		111	8 200	vites 12	4 76	9 76.	202 C	12	Sites, 2	6 44	18	2 sites, 1	1 8	1 55	0.00	50.00	583	50	0.0	2 22	10 07	3 595	12 618	0.10	0 66	571	191
g degro	eme	al WS	2 22 2	18 19		83 16	26 17	8.7 16	7.9 16	7.3 15 8.8 16	53 12	3.9 12	22 C	5.8 15 15	8.4 16	8.6 16	1 5 a a	5.6 16 16	0.4 18	6.7 14	2.2	8.5 16	9.6 17	8.9 16 0.6 17	8.4 16		71 6.0	57 58	11	1 A 1 7	8.6 34	11 0.0	22	0.0 18	8.2 16	12 12 12	6.5 14 14	2.7 19	8.6 17	2.6 19	0.6 19	10 19	8.6 16	25 10
d coolin	Ext	Annu 2	38.9	7 6		1 1 1	100	10	0.1	89	7.9 1	6.5 1	585	8.7 1	0.5	0.7	1	0.6	40 2	8.7	1 0.5	0.9 1	35 1	25	1 60		35 1	8.6		1 Ci 9 89 1 90	4 m m		27 - 27 - 29 -	3.2	0.5	22	12	5.8 2	0.4 1	5.6 2	4 0 7 7 7 7 7 7	48 2	0.8	0.9
ating an			14.6	2 6 6 6		2.4	2 1 2	51 2	11 2	124 131 12	1.7	1 1	1 1	1 1	3.4	3.8	1 0 0	38	5.0	10.0	1	6.4 2	5.6 2	5.9 2	22		0.9 2	W.8 2 V.A 3	0	9.1	A 4	4.0	1 4 9	7.7 2	9.0	0.0	9.4	6.3 2	0.6	0.3 2	100	9.4	0.5 2	00
f đry air nual ho	MCDB	196 2 Afr	32.0	0.12		315	4.12	32.0	27.5	31.0	25.9	42.4 8	424	47.9	48	48.6	497 7 9 9	455	48.7	34.6	1.00	05.2	64.2	596	040		27.6		0.00	16.9	N/A	502	100	20.5	22.2	513	19.7	15.2	213	223	212	513	32.4	23.0
per Ib q 65: An	DP/HR		74.2	122		74.5	1 1 2 2	74.7	1.67	74.5 1	72.8	77.2 1	1	1.0/	77.8 1	78.6	4.17	10.87	78.6	75.5 1	1 O.C./	68.3 1	68.2	689	683		73.9 1	N/A		1 9 12	N/A	222	12	72.4 1	72.9	072	12	70.1	72.0 1	72.2	4710	012	74.6	72.4
oisture Id CDD	ication.	Ę	1.9	2.58		9.53	575	86.6	82.6	84.7	84.7	83.6	84.8	2.53	6.53	84.4	2.5	5 5	85.5	83.4	20	78.5	78.4	78.6	78.3		82.2	N/A		81.1	N/A	212	122	78.6	9.6	3 5	81.9	78.1	\$2.3	82.5	6.13	81.6	81.2	212
ins of m HDD a	umidifi	0.4%6 12.14%	138.0	105		136.1	144.8	6.051	132.6	135.9 137.3	128.7	148.1	1201	147.1	149.9	152.7	148.4	148.9	152.0	139.7	1.601	112.9	111.6	01123	113.0		133.7	N/A		22.9	N/A	123.0	123.2	123.4	124.8		6721	121.7	127.9	129.1	128.6	128.8	136.3	20.0
e, ° atio, gra	Del		75.5	2 E		75.5	4 C	76.4	74.2	75.8	73.4	78.4	18.8	282	78.8	79.4	28	18.7	262	76.6	te	70.4	70.1	4.02	70.4		75.2	NA			N/A	122	212	73.1	73.5	2 2	74.1	71.7	73.6	73.8	192	73.6	.75'2'.	5.51
ongitude midity r	CDB	0 0	6.08	20.6		87.2	87.0	88.3	85.4	87.3 87.6	88.9	89.2	89.4	5.62	88.4	87.6	206	87.9	88.3	90.3	20.0	80.1	80.8	79.8 80.0	81.6		86.4	C.08	ţ	83.4	N/A	211.5	871.8	80.4	83.2	1.9/	8.E8	79.5	84.1	83.5	9.58 0.58	82.6	82.9	82.2
Long: L HR: Hu	WB/M	19	1.17	C.0/	2	77.4	0.0/	78.0	76.0	713 775	76.8	<u>79.6</u>	79.8	79.6	80.1	80.4	20.2	80.1 80.1	80.5	78.8	10/	71.3	71.3	71.5	71.7		76.8	/0.8 N/A	2	74.6	N/A	1.57	13.6	74.3	75.4	1.12	74.9	72.5	74.9	75.0	147	74.5	76.5	74.X
	oration	96 1CTD	1.19	7.06	ł	88.6	1./2	90.06	87.3	88.6 89.1	91.0	89.3	80.68 00.08	7.06	89.0	88.6	1.16	58.7	80.5	5115	717	83.2	83.2	82.6 83.0	84.1		88.6	88.0 N/A		0.1.0 86.3	N/A	1.61	5.08	83.5	86.5	81.0	7. 1 2	81.9	86.5	86.4	87.1 85.4	85.4	84.5	84.0
е, ^с Е	Evap	0.4	78.9	4. LL		78.4	202	79.4 4	773	78.4 78.7	78.1	80.4	80.8	80.3	80.7	81.4	1.18	80.7	81.4	2.67	1.2	73.5	73.3	2.67 2.67	73.7		78.2	N/A	0.00	76.2	N/A	76.0	75.0	75.7	1.17	0.02	76.9	74.2	76.9	76.9	1.17	76.5	78.2	00/
peratu)6 rrwn	75.0	5.61 7.67		74.7	227	75.6	72.8	74.0 74.3	73.9	77.0	0.77	76.8	77.3	77.7	5//	77.4	77.9	76.2	707	67.3	67.1	67.3 67.0	67.4		73.2	N/A	0.01	70.4	N/A	1.07	69.8	69.8	71.7	0.90	70.7	68.3	70.9	71.0	70.4	70.2	72.7	0.07
F bulb ten	NB	2(7) DD / V	91.2	0.44 0.78		89.9	000	89.8	87.0	88.9 89.0	90.3	92.8	92.2	8776	91.2	91.0	8778	90.5	90.7	94.0	1.02	81.1	81.2	80.5 80.4	81.9		\$8.4	83.0 83.0	000	2.6	72.7	1.17	78.8	81.5	84.0	5.6/	84.7	80.5	\$5.7	84.7	0.48	83.7	\$3.5	82.2
ature,	B/MC/	96 ACWD	75.8	74.0	1	75.4	1.51	76.2	73.7	74.9 75.3	74.5	77.3	772	202	7.77	77.8	1.02	1.01	78.3	76.4	£0/	69.1	69.1	68.9	68.8		743	PNA 4	2	71.9	N/A	5.02	6.0L	71.4	73.4		123	60.9	72.3	72.5	22	71.8	73.9	12.2
t temper coincide	oling D	10	94.1	716		90.8	6.88	6.06	89.3	91.0 91.2	92.1	94.8	93.6	92.8	92.7	92.5	0.10	616	92.0	96.9	102	83.7	84.2	83.1	84.5		91.0	91.2 84.8		87.6	74.1	4.67	81.0	83.9	87.9	81.8	87.7	83.1	88.3	87.4	8/8	86.4	86.1	84.4
třitude, poim Mean	ပိ	19/6 ICWD	75.8	2 2		75.5	C 4/	76.6	73.9	75.3 7.5.7	74.9	76.8	2115	201	9.77.9	3.77.8	1.8/	78.1	78.7	76.5	202	70.5	20.9	7.07 0.17	70.2		75.2	N/A	5	g R	N/A	172	2.C	73.1	74.3	2	13.8	ΕĽ	73.7	73.8	0.67	73.5	74.5	74.1
Lat: La DP: Dv MCDB		0.4	1.79	1001 00 7		93.2	91.4	92.9	91.7	93.3 93.4	94.7	97.3	96.6	94.2	94.2	94.1	90.9	03.6	93.4	99.3	51.0	87.9	87.8	86.4 86.8	58.4 58.4		94.0	86.7 86.7		90.Fo	75.6	81.8	\$2.4	88.1 88.1	90.4	84.0	91.2	85.7	90.8	90.3	90.4 80.4	89.3	89.8	88.5
	1	g DB	6.7	5 11		15.1	16.0	14.9	12.7	13.6 14.5	18.6	28.3	29.7	31.1	32.4	33.1	21/2	35.4	38.8	29.8	1.12	-0.8	-2.2	1.8	-07		18.2	211		12.4	16.7	10.4	12.4	11.9	8.8	0.51	10.4	6.2	8.9	6.7	1.0	6.1	10.4	10.2
<u>k</u> .,	;	Heatin oo kos	0.6	9.0	;	<u>.</u>	1.0	12	6.0	7.1	13.6	26.5	26.7	21.6	28.6	29.6	25.0	315	35.6	27.0	9.07	-6.8	-7.4	-25	989		13.9	271 173		0.2 4.7	11.9	10.4	0.2	7.4	2.6	n 4	5.9 5	1.6	4.1	1.4	8.0 -1 0	1.4	13	47
erature,		Elev	886	1421		538	583	384	336	558 489	928	118	68	52	4	2 2	2	2	2	180	AC7	289	194	۲. C	243		282	t 6	2	8 8	26	5 5	69	82	4	191	161	1017	627	663	202	304	577	029
ib temp		Buo	WE9.	WCC.		.44W	W/07	W89	.61W	.73W	.60W	30W	25W	W/O	M66	.23W	W40.	25W	03W	.74W	M 70	.28W	.82W	W26	72W		W78.	.43W		MIO	WE0.	W007	62W	W26	18W	M7C	W 6/.	88W	W10.	35W	WSC.	52W	WSL.	MOL
Wet bu	\vdash	at	56 NL0	16 NG0		98N 86	25 N 25	82N 87	04N 82	23N 85 18N 85	00N 84	40N 92	26 NEE	56 NDC	21N 91	E6 NEI	26 NIC	D6 N66	04N 90	54N 93	CA NIC+	05N 70	81N 68	90 N 69	40N 70		82N 76	0/ 1/1		N 12 N08	17 N85	02 N30	1 P N04	01 NT0	12 N81	D/ 1000	N DC NSI	17. NL2	41N 83	22N 83	F2 NF7	88N 85	10N 83	Da NCL
TTB: TTB: J	\vdash	Ц	30.0	1.1		36.0	28.0	37.5	38.0	38	38.0	31.	2	200	30	00	22.5	20.0	30.0	8	-70	44.(4	44	4		38.1	38.6		4 4	4	4 6	44	41.0	4	4	4	42.7	42,	42.5	4.4	42	42.	-24
Maatiing af acronyms: DB: Dry buib tamparaturo, °F MCTV2: Maan coincident wet buib tamparatu		ion	TOPEKA MUNICIPAL AP	WICHITA MID-CONTINENT AP WICHTTA/COL, TABARA	entucky	BOWLING GREEN WARREN CO AP	CINCINNATI NOKTHEKN KY AP FORT CAMDRETT (AAF)	HENDERSON CITY	LEXINGTON BLUEGRASS AP	LOUISVILLE BOWMAN FIELD LOUISVILLE STANDIFORD FIELD	SOMERSET(AWOS)	ALEXANDRIA ESLER REGIONAL AF	ALEXANDRIA INTERNATIONAL	BARKSUALE AFB BATON ROUGE RYAN ARPT	LAFAYETTE REGIONAL AF	LAKE CHARLES REGIONAL ARPT	MONKOE KEGIONAL AP NEW ORI FANS ATTUR CATTERINE F	NEW ORLEANS ALVIN CALLENDER F NEW ORLEANS INTLARPT	NEW ORLEANS LAKEFRONT AP	SHREVEPORT DOWNTOWN	STILLS VEPORT REGIONAL ARET Taine	AUBURN-LEWISTON	BANGOR INTERNATIONAL AP	BRUNSWICK NAS DORTI AND INTI, IETBORT	SANFORD MUNI (AWOS)	laryland	ANDREWS AFB	BALTIMUKE BLI-WASHINGIN IN L	lassachusetts	BOSTON LOGAN INT'L ARPT	BUZZARDS BAY	CHATHAM MUNI ARPT	MARTHAS VINEYARD	NEW BEDFORD RGNL	NORWOOD MEMORIAL	OIIS ANGB	PLIMOUTH MUNICIPAL SOUTH WEYMOUTH NAS	WORCESTER REGIONAL ARPT	DETROIT CITY AIRPORT	DETROIT METROPOLITAN ARPT	DETROIT WILLOW KUN AP FI INT RISHOP INTT, ARDT	GRAND RAPIDS KENT COUNTY INT	GROSSE ISLE ARPT	HOLLAND/TULLP CLLY
Copyright ASHRAE Provided by IHS under	rlice	ric nee with	h ASHR	AE	A		lanan I				•	1									Licer	nee=	Uriv	ensity	of Te	enas	Revi	ed Su	► b Ace	ount	6200	0111	4					1	e.					

Appendix B – Weather Information

WATER BOTTLING FACILITY MID-ATLANTIC, US

vation, ft red, mph , °F-day	ool. avs	D 65	739 534	CD-ROM	995 867	1074	1052	1242 1002 087	CD-ROM	1960 1348 1372	0611	1891	1869 1811	CD-ROM	592 688	400	476	460	289	978 1210	685	360	678 015	<u></u>	478	CD-ROM	873 1669	1918	1367	1677	1950	2016	1579 1489	1956 1987	429
Elev: Elev Mind spe base 65°F	Heat./Co Degree-D	EDD / CD	24	nore on	18	6	60	3 13 4	more on	8 9 8	16	2 6	8 8	nore on	8 14	50	81	81	312	88	35	8 8	12	62	3 13 13	more on	818	99 99	19	2 4	86	3 8	5 8	11 88	8
#75 e-daju,		(0 I	2 5 5	sites, 1	8 7 8 7	19	9 i 9 i	4 M 4 4 N 5	sites, d	2 4 8	190	28	10	sites, 8	89 0 m	5	00	50	38	4 6 8 6	7 59	3 12	88	0.0	5 R 3	Sites, 8	1 10	55	4 ·	1 8	3 25	18 19	<u>1</u> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 8 2	र्म क्
g degre	eme d WS	9.6 50	11 15 11 15			11	22 16	91 12 00		14 16 18 20 16 21 21 20	121	10 16	52 13 52 13	15	50 33 18	11 22	19 19 19	10 10	10	5 5 6 6	0.6 18	1 2	5.8 14	101	121	1	14	51 51 51 51 51 51	12 15	9 8 9 8	15 15 51 15 52 15	19	58 15	8 2 2 3 2 2 3 3	-1
cooling	Extr Annus	16 2.5	0 10		93 93	t≌ to	8 10	282		9 7 7 9 9 7 7 9	1212	1 0	85		ส พ อ ท	51 2	5 8 2 9	3 X 1 Y	1 H 1 M	88 99	25	1 12	4 8	122	154 188		4 H 7 D	8 8	91 91	99	8 9	13 13	9 5 9 5	9 8 3 9 5 5	4 5
ing and		B	1 IB		8 2	18	4 9 6 5	89- 888	1	1 7 9 7 7 7 9	177 1	ន្រុ ១៩	12 25		9 A 6	5 51	9 6	33	ាត ខេ	22	1 24	5 12	21 18	1212	128	2	4 6	6 19	0 19	1 2 2	0 10	181	4.8	5 0 2	1
ry air al heat	e CDB	MCD	62 ED		8 8	3 12	5 5			9 8 29 7 88 29 7 88 29	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	80 27 11 71	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		A N	25	8 E	82 P 19 2	5 75	6 8 5 9	6L L	12 20	9 8 8	1 2 2	109	Ì	25	5 8 8 8	08 0	2 2 2	2 84	3 12	E 0	4 2 2 2 3	Ng A'
ib of d	/HR/M	/ HR	5 117 0 114		1 127 2 110	6 130	3 128	0 4 0 0 124 0 124 0 124		111 E 8	9 9 9 8	2 0	5 107		a M E M	111	4	0 112	100	2 12 21 12	9 120	5 100	011 C	011 0	199		1 126	5 EE	8 125	8 190	0110	1 1 1	8 IEI 8	0 I 9	21 8
an ba	ion DP	DE	517		2 F	14	2 8	2 00 0 2 12 12 12		3 8 8 8 8 8	68	- 10 - 10	1 05. 140	i		88	e e	367	88	n n n n	5	6	61 F	66	202	e t	e e S E	5.5	21	27	т с Е Е	12	2 4	12 F F F	2
af moist D and C	idificat 6	MCDB	4 80.0 8 80.4		4 81.8	8	100			2 6 7 6 7	4	128	142		N/9	8 76.0	1 20	0.00	11	8 80. ¹	2 80.	0.02	8 82	88	0.67	8	808	2 2 2	9 81.1	2.42	3 85.	52	3 22	1 2 2 3	21.1
grains o HDI	Dehumi 0.4%	HR/	121.		251	139.	EE S	131.0		90.6	110	105	Э.П П		N/A	117	18	119.	118	130.	126.	56	130.	123.	123.		130.0	140.	129.	e e	148	142	134.	140.1	COCT
ide, ° ratio,		DP	25 25		15.2 1 ET	76.5	75.4	7.47 7.51 7.51		60.4 61.5 67.7	5.55	643	66.8 65.9	1	N/A	1.07	422	7.17	70.1	74.9 74.3	73.2	4 E	74.8	25	22 22 25	i	74.0	76.8	73.7	4.57 4.57	75.5	172	75.3 75.9	712 782	2.01
Longin umidity	ICDB	MCDB	83.4 82.0		85.0	86.3	85.0	85.5 85.5 85.5		85.6 81.3 82.6	83.6	85.3	86.4 86.1		82.28 N/A	78.6	80.1 82.3	81.6	77.6	81.9 84.6	82.6	80.0	84.6 87.4	81.7	81.0	1	86.7	88.3 88.8	85.7	88.2	87.9	88.2	87.7 87.9	88.4 87.5	c.c%
Long:	WB/	WB/	74.1 73.5		74.8	77.2	76.7	76.3 76.3 76.0		70.0 64.5 69.2	68.3	04.2 07.8	69.5 68.9		N/A.2	71.1	293 193	72.9	70.5	75.8	74.3	722	75.6	73.6	73.1		76.1	78.1	75.7	1.6	79.4 7.77	78.3	77.3 77.6	79.3	10
	oration %6	ICDB	86.4 84.5		87.5 86.5	87.8	87.1	80.00 80.000		873 825 832	1.1	82.4 86.4	87.0 87.4		84.8 N/A	80.9	84.9	84.4 82.5	80.0	84.3 87.2	84.6	52	87.4 85.0	84.5	83.2 85.4		5.53 4.88	90.0	87.6	9.06	80.3 80.3	89.4	80.3 4.08	90.1 89.0	80.8
ري. م	Evap 0.4	WB/N	75.8 75.5		11.9	78.8	78.0	78.0		71.4 65.3 70.4	69.4	68.7	70.6 69.8		N/A	72.7	75.2	74.8	4.27	7.0	76.0	141	76.8	75.5	74.9		71.1	E 01 2 01	76.9	79.0	20.5	79.5	78.6	80.3 80.3	K'0/
peratur		CWB	69.7 69.5		72.8	73.4	73.0	275 7 7 7 7 7		64.5 60.0 64.2	63.6	63.0	64.9 63.8		/0.2 N/A	67.1	08.8 69.2	68.9	6.99	71.4 21.0	70.2	68.2	713	69.7	69.0 70.9	0.02	73.4	75.1	73.1	121	76.7	75.1	74.5 74.4	75.6 76.7	1.51
uib tem	30 20	DB / M	85.8 82.4		86.4 84.3	87.8	86.9	88.2 86.8		96.6 90.6 92.2	91.2	93.9	95.2 94.2		85.4 78.4	80.0	83.7	82.8	78.6	83.7 86.6	83.8	203	85.5	82.7	82.0 83.8		89.5 89.5	90.9	87.8	0.06	89.2 01 1	91.6	89.4 89.8	91.1 89.0	23.1
ture, °F ut dry b	MCW	CWB	70.8		240	147	74.1	262 740		64.1 63.8	63.5	63.0	65.2 63.9		N/A	68.4	0.0/ E.07	70.0	68.7	27 20 20	71.7	5.69	121	712	70.5	6	252	75.6	73.9	15.7	71.5	757	75.6	71.5	2.57
empera	ing DB 1%	B / M	88.6 85.9		89.4	503	2.62	91.0 89.7		98.8 92.9 04.0	93.4	9.96	97.4 96.5		80.8	82.5	86.5 86.5	85.6 05.6	81.0	86.5 89.3	86.3	83.2	88.5	85.4	84.5 86.6		2.03	93.1	6.68	1.02	1.19	943	91.7 92.3	93.5	c.06
nde, ° point t Mean co	C.00	WB I	21		15.0	75.7	74.9	75.1 74.4		603 803	63.9	83.2	65.3 63.7		15.0 N/A	70.0	777	72.0	2.69	73.5 74.4	225	12	74.0	13.1	2 C 2		74.6	76.6	74.7	16.6	78.1	76.4	75.9	76.9	5
rt: Lati P: Dew (CDB: J	0.49	B / MC	012 03		26	5.0	610	9 4 9		0000 227	120	1.6	8.60		8.8	522	00	282	57	5.2	8.0	59	4.10	4.0	500		17	5.5	52	12	2 2	0.2	54.1 54.1	282	4.7
402	8	966 D	5 5		6 F 5	12	<u> </u>	334		1 2 2 2	0.0	12	2.5		32	99	20	35		22	95		0.0		81		0.9 9.9	2.0	1.7	3÷	8.0	12	3.1	2.9	2.8
	ating I	96 99			 	• m	 m (101		~ ~ ~					~ ~ ~	 o 4		 							- A	40	1	20	00	4 C1		- 01 11	4
re, °F	He	90.6	5,0		6 <u>9</u>	19	93	199		121	n d	9	18.18	ľ	Ηm	73	47	φŝ	2 1	11	m c	9	0 =	20	1.45	:	18	12	17	2 R	2 2	12	18.	17 27 2	9
nperatu	Elev		7 233		8 %	148	1 75	02 - 7 2 - 20 2 - 20		V 4308 V 5315 V 4295	V 4213	V 4094	V 3668 V 4081		67 1	1637	255	7 518	1722	2 R 2 R	7 581	7 236	7 161	554	745		768	7 194	1 336	7 95	7 26	217	7 436	20 m 100	1.6
bulb ter	Long		71.44W 70.82W		74.46W 74.13W	74.60W	75.08W	74.17M 74.06W		05.98V 06.62V 03.32V	03.08V	V 62.80	04.54V 06.48V		73.80W	75.98W	/8./4W 76.89W	75.40W	79.27W	73.80W 73.88W	74.10W	73.47W	73.88W	77.68W	N3E.27 W17.67		M4C.23	78.88W 78.93W	79.94W	77.62W	77.43W	79.02W	78.79W	W10.77 W10.77	80.22M
Her A	Lat		NE6 3		18V	0.02N	NLEG	N22N		1 NE8.2 1 N90.3 1 N86.4	1.43N	14N 1	I NIES		145N	21N	N No	N 23N	NSI 3	N 280	N021	NSO	NE91	NT2N	NSI		2.21N	N86 t	S.10N	NE8.4	NOL T	NLIS	151N	NEES 1	NEL.
W. thure, °1			4 4		m 4	4	Ξ,	4 4 4		in in in	i m i	ňM	щщ		ने ने	4.	तं च	4 4	f¥f	र्न न	4.4	r 4	ৰ ব	ৰ ব	44	ì	n m	m m	m i	ų ų	ų ų	i m	m m	ж ж л н	ň ;
ulb tempera								ARPI V AD				ראם גאם	PARK			NK FIELD	J AL AP	uv er		ATT. AR RPT			COAP	HESTERI	DERCOA	5	L ARDT		TULAD INT				IATIONAL AL AP	NAL ARPI	US AF
re, °F it wet b			OR OR		ALF		AL AF	T DUNT		TE SA L'ARPT S	0	COKN	AL AB		a.	NALD	EGION	TUTUN	_	EDY I DIA Al	IJ		CHESS	R ROC	NTY AL		AL AKI	D SNS	LINO	a (so	0	5	VIERD	NATIO	XNOL
ryms: nperatu inciden			ARPC		LENG A		NICIP	RUAT RPOR		E INTI CLOVI	(AWO	Хоод (ff	USTRI		E TA	EDWI	INGRU	NINC	AWOS	GUAR	LEWAI L & AE	EAE	EDUT	REATE	A COU		OUGL	E RGN	PIEDN	E (AW	CAF	-	HAM I TERNJ	INTER	EM Ko
of acro buib ten dean cc			ESTER VIL TE		IC CIT	EAFB	TEM	N MER	0	GORD(IERQU	INUM	GLON IAN AJ	TIND		ELIG.	MTON	CORN	S AFB) NIMO	RK JF RK LA	RGH/S	BURGE	CEEPSI	TER G	NEID/	lina		EVILL:	BORO	NUTLL'	JER M	n	NDUR	GTON	N-SAL
eaning 3: Dry I CWB: A			ANCH	Jersey	TLANT TLMAR	CGUR	ILLUI	EWARU STERB(Mexic	LAMO	SIVO	DILON	DSWEL HITE S	York	VIBROS	NGHA	MIRA	STEELS	MEST	EW YO	EWBUI	ATTSE	DUGHE	CHES	TICA O	th Caro	FARLO	AYETT)RT BR	REENS.	CKSO	EW RJT	DEAF	ALEIG: CHMO	NUMLI	INSIC
된 집 된 Coowright ASHRAE	Station		N H	New	A.	Ň	31	z # F	New	4 7 S	5	ΞH	RC	New	4 A	H	ゴ티	5 2	A	見 男	25	러	2 2	23	558	Nor	2 U 	F.	5	ΞY	Ë	20	22	ES IN IS	Ň
No reproduction or netv	vorking	with <i>i</i>	atted wit	e hout	icens	e fror	m IHS										N	ot for F	tesale,	, 10/03	v2011	11:40	-40 MD	uo Aco IT	-uni/662	JU11	14								

evation, ft reed, mph F, °F-day	Cool. Dave	0D 65	CD-ROM	ŝ	477	4 5	450	CD-ROM	0/0 1151	55 15	924	777	629	899	1028 FTT	974	577	1111	2248	19.20 2045	1982	1971	2004	1903	CD-ROM	412	200	790	423	229	292	CD-ROM	828 617	535	£ 66	1114	1132	875	751	5	625 1059
Elen: Ele 1975: Wind sy 194, base 65°	Heat./C	HDD/CI	s, 6 more on	1/40	9167	9310	909/ 8763	s, 2 more on	00 11 4754	5904	5549	5994 5474	6150	5343	5172 6156	5381	6218	2, 0 71/07/2 07/2	2076	2403	1255	3407	3481	3996	. 12 more on	4204	4550	4323	4222	6540 6540	4576	s, 5 more on	5959	6098	5228	5035	4822	5356	5624	5988	6105 4959
gree-da	. 2	59/6	6 site	1.55	22.2	20.9	22.0	13 site	16.6	19.0	18.7	18.8	19.1	17.2	16.8	16.8	17.4	10.0	20.1	777	19.5	20.0	16.1	20.7	9 sites.	15.9	15.9	12.5	17.6	16.7	16.3	14 site	18.1	12.9	16.6	19.0	173	17.0	17.0	14.8	165
oling de	Treme	2.5%		147	253	24.2	24.7		18.5 18.3	21.0	20.7	20.7	21.1	19.0	20.6	18.8	19.0		181	24.1	215	22.7	17.8	23.9		2.CI	12.0	15.5	19.8	18.5	18.3	00	20.5	15.3	18.4	22.9	18.7	18.5	10.7	17.1	15.9
and co		19/6		282	28.3	26.9	28.9	ł	20.2	24.7	24.4	24.4	24.6	21.6	22.1	215	21.9	2	26.0	717	24.6	25.5	19.8	26.7		19.7	20.0	18.4	23.8	20.6	20.8	2	24.2	17.8	20.5	253	21.1	20.3	23.4 4.02	19.5	20.3 18.3
air heating	BB	CDB		C.0/	78.8	78.9	775		2.8/	79.6	80.4 80.4	80.1	79.3	80.1	813	80.8	77.7	010	83.3	477 K	83.8	82.9	55.1 25.1	82.6		74.6	172	73.9	73.1	67.0	72.6		1.6/ L.LL	EL I	79.4	81.0	81.4	78.4	78.3	77.8	81.7
b of dry Annual	IRMC:	HR/N		0 211	0.011	EIII	108.6		128.2	121.6	123.6	123.1	122.8	123.9	135.6	126.4	118.1	5 241	127.2	1.921	128.8	129.8	133.5	126.2		27.2 11.0	7.07	1.77	81.6	83.U 66.9	77.4	0.001	118.0	117.1	121.5	126.1	127.4	2.011	172 7	113.5	117.3
re per ll	n DP/H	DP		20.02	71.4	69.4	67.7	i	73.8	011.0	12	723	117	72.3	72.1	73.0	70.7	0 5 5	72.9	0.57	73.4	73.3	74.8	72.4		57.4	200	58.6	61.4	53.0	59.8	5	50	70.4	724	2.67	74.0	70.9	70.8	69.69	73.1
"moistu and CI	lificatio	CDB		t.10	80.0	81.2	79.8	1	82.5	81.4	81.8	\$2.1 en o	80.8	81.1	84.2 87.0	825	79.6	N LO	6 ⁷²	23.4	85.7	84.8	522 525	83.2		20/ 8/17	46	74.5	75.2	67.4	73.9	,	79.6	79.8	80.4 80.4	82.9	272 83.3	79.9	6.62	79.1	79.3 83.2
rains of HDD	ehumid 0.406	HR/N		123.0	128.4	121.0	118.8		1.461	127.4	128.8	129.5	129.0	126.9	131.0	134.3	124.3	1 2 2 1	129.4	0.051	136.8	136.8	136.1	130.7		0.02	5.43	82.4	86.1	71.7	82.0	0 0 0 0	125.0	124.6	125.7	133.6	134.6	125.4	124.7	117.0	123.5
de, ° ratio, g	٩	DP		10.1	73.4	71.8	70.3	1	75.1	73.3	73.4 1	73.7	1.67	73.0	78.5	74.8	72.1	1 12	73.4	1.4.1	75.1	74.8	4.57	73.4		60.66	62.0	60.4	62.9	54.8 54.8	61.4		72.0	72.1	73.4	75.2	4.c. 75.6	72.3	22 2 2	70.4	72.2
Longitu umidity	(CDB	MCDB			82.5	82.5	82.1 82.1		86.2	83.1	0.4%	83.3	82.5	83.8	86.1	85.0	82.1	¥ 00	91.6	9.95	92.2	80.8	92.7	90.9		86.9	5.48	91.4	84.5	85.9	85.0	0.00	83.8 82.0	81.7	84.5	85.4	80.3 86.8	83.1	82.6 84.6	82.1	81.6
Long: J HR: HI	WB/M	WB/1	1	2 T	73.6	7.27	71.2		7.9L	74.7	70	75.0	743 1	75.1	7.17 4.87	75.9	73.5	1.45	77.2	10/	0.77	1.17	78.5	76.4		06.8 66.8	0//0	67.5	67.8	62.2 62.2	67.1	5	2 E	73.0	a c 752	76.4	0.17	73.7	1.67 7.75	72.1	73.3
	oration	VICDB		0.00	84.4	24.7	80.5 84.4		0. 1 2	85.6	80.8 86.2	86.2 86.2	84.6	86.1	86.7 86.0	87.1	84.7	Ň	92.9	8.06 1 10	93.4	808 208	94 S	91.8		28	212	94.0	87.0	8/.9 88.4	88.2	2	102	83.5	8.68 86.8	2.73	C 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	84.9	8.42 8.42 8.42	83.0	84.0 -88.6
e, 5	Evap	WB/J		f K	76.2	75.0	73.6		4.C.	76.3	76.5	76.8	75.8	76.4	8.67 2.77	77.5	75.1	, EF	78.1	1.11	79.0	78.2	19.62	77.4		68.4	28.7	0.69	69.4	20/ 8/69	68.7		74.7	74.6	765	78.0	78.7	75.2	255	73.5	72.0
uperatu	99	ICWB		1.10	68.3	68.0	00 00 00 00 00 00 00 00 00 00 00 00 00		73.2	1.17	11°	70.8	70.4	71.9	0.67 1.4	72.2	69.7	5	73.8 8.67	8.5/ 7.17	75.2	73.9	76.7	73.7		64.1	64.6 64.6	64.7	65.3	59.7	64.6	í	60.60	69.1	71.5	72.6	0.57 4.67	69.8	69.8 77.0	68.7	69.1 72.6
F buib ten	NB C	DB/N		0.00	84.2	83.7	84.3 84.3		c.cs 87.9	84.1	85.4	84.8 ec.e	83.1	85.3	87.7	86.4	83.4	2.30	6.86	94.0	90.6	93.6	95.4	95.5		85.7	23.9	616	83.4	86.5 86.5	84.1		83.0 83.0	82.1	86.7	87.0	88.1 88.1	84.6	84.2 86.5	82.8	83.3 87.4
ature, °	B/MC	ICWB		200.00	70.1	60.4	68.1 68.1	i	74.4	72.5	72.8	72.6	717	73.1	74.9	73.6	71.1	5	0.61 1.61	14.1	753	74.0	76.8	73.5		0.11	30.5	629	66.5	0.19	65.8	ŝ	201	70.6	725	13.9	4.6	71.1	112	69.8	73.8
temper temper	oling D	DB/N		5.0%	87.7	86.6	5.68 88.0		90.2 202	86.7	87.9	87.8	85.5	88.2	90.1	89.2	85.8	600	100.2	20.2	99.2	96.7	98.8 98.8	98.6		2.88	0.18 20.5	953	87.1	1.88	87.9	0.00	85.7	84.4	0. 1 0	89.8	9.0%	87.4	86.6	85.4	86.0 90.0
titude, w point . Mean	0v Ov	ICWB		1.20	ΞĽ	71.0	08.9 68.9		74.9	73.9	73.6	73.5	13.0	73.7	75.7	74.5	72.7	5	73.4	1.4.1	75.0	73.6	76.5	73.5		27.0	00.00	67.2	67.5	08.1	67.0		72.0	72.4	13.8	74.8	4.c.	72.5	72.5	11	72.1
Lat: La DP: Du MCDB	F O	DB/N		0.00	90.8	90.0	91.4		92.8	89.4 21.1	506	90.4	88.0	90.4	92.5	913	88.5	2 001	102.4	6,66	101.8	565	100.1	100.6		92.9	91.4	98.9	91.2	91.8	92.0		91.0 88.5	88.0	92.4	92.6	776	89.9	89.5 07.4	58.4	88.9 92.7
	ng DB	9996		251-	-15.8	-17.2	-1/3	i	12.4	8.5	1.6	5.6	5.7	11.7	103 5 5	28	1.7	10.0	20.8	17.0	18.2	17.9	18.8	13.1		1.62	20.5	25.7	28.6	0.02	26.2		6.11 9.6	8.9	7.7 13.3	14.8	15.6	9.8	9.4 4.51	8.8	8.3 14.4
4	Heati	90.60		20.02-	-20.4	-22.2	-19.9		6.3 6.3	2.5	9.0	-0.4 1 2	10	6.9	4 4	1.4	1.8	201	17.9	11.4	13.6	12.1	15.8	6.5		22.0	472	22.9	23.9	5.4	21.9	đ	4.7	E	2.5	10.7	071	4.3	3.7	2.7	3.5
oerature	Elaw.	FIEN		200	906	833	1713		499	804	1004	814 866	1312	928	755	820	1188		6011	1200	1010	1260	633	1339	1	23	167	1329	108	202	200	107	384 1470	1247	348	312	ور 118	1273	1204	1184	961 361
ulb temj	202	Smort		WC/-W	7.40W	W81.7	11.28W		1.44W 4.42W	1.85W	4.22W	3.67W	2.52W	3.07W	2.93W	4.05W	0.67W	1000	8.42W	W007	W\$0.7	7.38W	5.98W	7.92W		3.28W	3.21W	2.87W	2.60W	WC6-2	3.00W		8.32W	0.95W	0.85W	6.76W	W62.0	9.92W	0.23W	0.28W	S.73W 5.15W
. Wet b	1	ŧ		O NEO	6 NL6	6 N26	26N 10		8 N01	41N 8	9 NV 9 NV 8	8 NI0	8 NIC/ 8	8 N.L.0	82N 8	8 NES	25N 8	0 102		4 NV65	15N 9	42N 9	6 NEO	9 NEE		48N 12	I NEL	CI NGE	59N 12	25N 12	91N 12		NOE	L N8L	22N 7	19N	L N80	36N 7	8 N 8	8 NEI	20N 7
EM EM	-	-		f 4	4	4	¥ 4	1	đ č	41	ų ų	41.	ñ 4	4	б. 1	6	41.	20	t A i	4 X	i M	5 <u>6</u> 2	n n	36		44	4 4	4	. 55	t 4	4	\$	9 9	4 :	¥ 4	숙 :	4 4 4	6	4 4	4	49
ving of acronyms: Dry bulb tomporature, °F FB: Moan coincident wet bulb tomporat			Dakota	GO HECTOR INTERNATIONAL AD	ND FORKS AFB	ND FORKS INTERNATIONAL AP	OT FAA AP OT FAA AP		CINNATI MUNICIPAL AP LUNKI	VELAND HOPKINS INTLAP	TON INTERNATIONAL ARPORT	OLAY AIRPORT	VSFIELD LAHM MUNICIPAL ARPT	O STATE UNIVERSI	KENBACKER ANGB FIDO FYDRESS AIRDORT	GHT-PATERSON AFB	NGSTOWN REGIONAL AIRPORT	oma T cui i	TON MUNICIPAL	AHOMA CITY WILL ROGERS WOR AHOMA CITYVIIII EV	LWATER RGNL	CER AFB 6 A. P. TERNATIONAL AND DOD T	SA/LLOYD JONES	ICE AFB	2	ORA STATE	FENE MAHLON SWEET ARPT Minningt i biningt	DFORD ROGUE VALLEY INTL AP	TLAND INTERNATIONAL AP	ADD ROBERTS FIELD	EM MCNARY FIELD	vivania	ENTOWN LEHIGH VALLEY INIT OONA BLAIR CO ARPT	LER CO. (AWOS)	S INTERNALIONAL AF	DLETOWN HARRISBURG INTL AP	ADELPHIA IN JEKNA JONAL AP ADELPHIA NE PHILADELPHIA	SBURGH ALLEGHENY CO AP	CSBURGH INTERNATIONAL AP DING SDAAT7 FIFLD	SHINGTON (AWOS)	KES-BARRE SCRANTON INTL AP LOW GROVE NAS
DB: EDB		TOTING	North	CTC 1	5	5	Į	Ohio	4 B	98	DAN	NA S	MAI	ΗO	DIN IOT	WR	NOL	Oklan	Ϋ́		S	ĒĒ	55	VAD	Orego	COL	NH N	i E	POH	ố 분	SAL	Penns	ATA ATA	5	IAI	À	빌	LId	PIT	WA	IM
Provided by IHS under No reproduction or netv	license orking	with	ASHE	AE vitho	ut ice	nse fi	nom IH	IS												Lice Not 1	nsee= for Re	Urive sale,	nsity o 10/03	of Tex v2011	1 11)	levised 10:40 M	Sub DT	Accou	.nt/66	20001	1114										